
INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance, LLC

INL/EXT-21-62050
Revision 01

Development of the IES Plug-
and-Play Framework

March | 2021

Konor L Frick
Andrea Alfonsi
Cristian Rabiti
Shannon Bragg-Sitton
Idaho National Laboratory

DISCLAIMER
This information was prepared as an account of work sponsored by an

agency of the U.S. Government. Neither the U.S. Government nor any
agency thereof, nor any of their employees, makes any warranty, expressed
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness, of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately
owned rights. References herein to any specific commercial product,
process, or service by trade name, trade mark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the U.S. Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily state or reflect
those of the U.S. Government or any agency thereof.

INL/EXT-21-62050
Revision 01

Development of the IES Plug-and-Play Framework

Konor L Frick
Andrea Alfonsi
Cristian Rabiti

Shannon Bragg-Sitton
Idaho National Laboratory

March 2021

Idaho National Laboratory
Integrated Energy Systems

Idaho Falls, Idaho 83415

http://www.ies.inl.gov

Prepared for the
U.S. Department of Energy
Office of Nuclear Energy

Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517

Page intentionally left blank

iii

ABSTRACT
Since early 2013, to accommodate the vast array of possibilities introduced by the concept of

integrated energy parks that could incorporate multiple energy generation sources and multiple
energy users, Idaho National Laboratory (INL) has been developing a library of high-fidelity
process models in the Modelica modeling language. These models are a cornerstone of the
analysis and optimization tools developed via the Department of Energy Office of Nuclear
Energy (DOE-NE) Integrated Energy Systems (IES) program, led by Idaho National Laboratory
(INL). Models are used to create and characterize system inertia, thermal losses, and the
efficiency of integrated systems. These physical models help map physical performance into
economic performance, allowing for system-level optimization. In addition, the models are used
to test innovative system-level control strategies for interconnected thermal generators.

However, for real-world applications, it is not always practical to develop a model or rewrite
an existing model in Modelica; instead, interoperability with Legacy FORTRAN, C, Python, or
other codes is required. To accomplish this interoperability the IES Program is seeking to modify
the existing suite of physical models, currently held in the HYBRID physical modeling
repository, to be consistent with a “plug-and-play” approach in Modelica/Dymola models using
Functional Mock-Up Units (FMUs), Functional Mock-Up Interfaces (FMIs), and machine-
learning techniques. The models developed are held within the HYBRID repository that is part
of the IES Framework for Optimization of ResourCes and Economics ecosystem (FORCE).

This report provides an overview of all the performed activities revolving around the
deployment of methods, software infrastructures, guidelines, and a workflow for the construction
and usage of models, as encapsulated using the FMI/FMU protocols and standards. The report is
organized into three main macro-subjects, all of which are interconnected:

 FMI/FMU adaptors for Modelica models

 The HYBRID repository’s new structure and open-source deployment

 RAVEN FMI/FMU exporting capabilities and artificial-intelligence (AI)-based analysis
acceleration.

The first part of the report discusses the FMI/FMU adaptors created within the HYBRID
repository to allow users to quickly export models such as FMUs. Several examples are given,
highlighting the step-by-step process of converting an existing Modelica model into an FMU for
use within the Dymola platform. Simulation results demonstrate that, though minor differences
may occur, overall control, trends, and solution integrity are maintained between the standard
Modelica simulation and FMU simulation results. However, it is worth noting that, for small
systems, the FMU requires a longer simulation time than the Modelica-only simulation. Using
this process, a company can provide external entities with models that contain proprietary
information, without disclosing any model-related information that could be considered business
sensitive. Such an ability would allow institutions to bypass the necessity of having
“whitewashed” data.

In the second part of the report, the new structure of the HYBRID repository is discussed,
with a major focus on the series of completed updates. These updates include the addition of
Modelica system-level regression tests and software quality assurance (SQA) documentation to
ensure that modifications to the Modelica models do not alter system-level model results.

iv

The third and final part of the report documents the work performed for deploying methods
and workflows to construct RAVEN AI-based models that are compliant with the FMI/FMU
standard. Such work is key for deployment of the “flexible ecosystem” concept, since it allows
for the replacement of high-fidelity Modelica models (or any other FMI/FMU-compliant model)
with RAVEN-generated AI surrogate models.

Overall, extensive work has been completed in regard to developing FMUs and FMIs from
existing models, understanding the requirements and limitations of FMUs, and open-sourcing the
HYBRID repository with an integrated regression system for use within FORCE.

v

Page intentionally left blank

vi

CONTENTS
ABSTRACT... iii
ACRONYMS...xii
1. INTRODUCTION..1
2. FUNCTIONAL MOCK-UP INTERFACES AND UNITS... 3

2.1 Co-simulation..4
2.2 Model Exchange..5
2.3 Advantages of Each Protocol.. 6

3. MODELICA TO FMU ADAPTATION.. 7
3.1 Adaptors.. 7

Fluid Port Adaptors... 9
Thermal Port Adaptors..13
Electrical Port Adaptors.. 19

3.2 FMI Construction Guide... 20
Model Preparation...21
Adaptors.. 22
Export ..23
Import ..24
Simulation... 26

3.3 Turbine Replacement Example... 28
4. HYBRID REPOSITORY...31
5. DEPLOYMENT OF A RAVEN FMI/FMU DRIVER.. 37

5.1 RAVEN Introduction.. 37
5.2 RAVEN Models.. 38

6. DEPLOYMENT OF RAVEN FMI/FMU EXPORTER FOR AI-BASED ANALYSIS
ACCELLERATIONS.. 44
6.1 RAVEN AI construction... 45
6.2 Development of FMI/FMU exporting capabilities for RAVEN AI..46
6.3 Future Extension of the FMI/FMU Exporter to the RAVEN Hybrid Model..........................48

7. Integrated Energy Park Demonstration Case... 49
7.1 FMI/FMU Creation and Use within Dymola.. 50
7.2 Creation of Surrogate Using RAVEN...54
7.3 Comparison of Results.. 56

8. CONCLUSION.. 60
9. FUTURE WORK... 61
10. REFERENCES...62
APPENDIX A – HYBRID USER MANUAL...65

vii

APPENDIX B – SQA: SOFTWARE QUALITY ASSURANCE PLAN (SQAP)....................................113
APPENDIX C – SQA: SOFTWARE DESIGN DESCRIPTION (SDD).. 140
APPENDIX D – SQA: HYBRID SOFTWARE REQUIREMENTS SPECIFICATION AND

TRACEABILITY MATRIX (SPC)... 164
APPENDIX E – SQA: HYBRID CONFIGURATION ITEM LIST...186

FIGURES
Figure 1. Example IES architecture, illustrating thermal and electrical interconnection to support

hydrogen production and chemical conversion.. 1
Figure 2. Plug-and-play framework environment...2
Figure 3. Co-simulation FMI/FMU scheme... 5
Figure 4. Model exchange FMI/FMU scheme..6
Figure 5. Fluid ports (note that “ports” are a container method in Modelica used to transfer

several pieces of physics-based information within a single “connector”)...................... 7
Figure 6. Transition from a Modelica physical model into an FMU.. 8
Figure 7. FMU template folder location within the larger Nuclear Hybrid Energy Systems

(NHES) folder as part of the HYBRID Repository..9
Figure 8. (Left) PressuretoMassFlow adaptor. This adaptor is best connected to a resistance port

able to set the output mass flow rate. (Right) MassFlowtoPressure adaptor. This adaptor
is best connected to a volume port able to set the output pressure. Note: Both of these
adaptors were created by Modelon for use in the INL plug-and-play framework as part
of an FMI/FMU course subcontract... 10

Figure 9. An example (using adaptors) involving two pressure sources using moist air, one of
which oscillates in pressure, causing a mass flow reversal. The unit in the red box will
become an FMU. (k=Temperature input to pressure flow boundary; freqHz = pressure
frequency oscillation placed on pressure_source).. 11

Figure 10. Example of a reversible flow using two pressure sources, moist air, and a model
exchange FMU. (k=Temperature input to pressure flow boundary; freqHz = pressure
frequency oscillation placed on pressure_source).. 11

Figure 11. Example of a reversible flow using two pressure sources, moist air, and a co-
simulation FMU. (k=Temperature input to pressure flow boundary; freqHz = pressure
frequency oscillation placed on pressure_source).. 12

Figure 12. Comparison of mass flow to the pressure sink across the original model, model
exchange FMU, and co-simulation FMU (timestep = 0.02 seconds).............................13

Figure 13. (Left) GeneralTemperatureToHeatFlow adaptor for use in the INL plug-and-play
framework. (Right) GeneralHeatFlowToTemperature adaptor for use in the INL plug-
and-play framework. (T=temperature, dT = first derivative of temperature, d2T =
second derivative of temperature, Q = heat flow, der(Q) = first derivative of heat flow,
der2(Q) = second derivative of heat flow.) Note: only T and Q are required the
derivative values are optional for stability... 14

Figure 14. Example meant to demonstrate the FMU variants available with the thermal FMU
adaptors. The upper part demonstrates how to export two heat capacitors and connect
them together in a target system. The lower part demonstrates how to export a

viii

conduction element that only requires temperatures for its conduction law, and
connects this conduction law to both heat capacitors in a target system........................15

Figure 15. Demonstration of an FMU variant example that uses model exchange FMUs for the
thermal heat port adaptors.. 16

Figure 16. Collapse of the upper part of Figure 14 into a single FMU for co-simulation. This is
required because the frequency between the direct and inverse conduction problem is
so fast that a single cut between the two could not be made without instabilities
occurring...16

Figure 17. Upper model of Figure 14 connected with the combined direct/inverse co-simulation
FMU..17

Figure 18. Lower model of Figure 14, co-simulation FMU... 17
Figure 19. Direct/inverse simulation results for the original, model exchange, and co-simulation

(communication interval: 0.002 seconds) FMU runs. (Top) Heat flow into the
capacitor. (Bottom) Capacitor 3b temperature... 18

Figure 20. Conduction (lower model) simulation results for the original, model exchange, and co-
simulation (communication interval: 0.002 seconds) FMU runs. (Top) Heat flow into
the capacitor. (Bottom) Capacitor 3b temperature... 19

Figure 21. (Left) GeneralFrequencyToPowerFlow adaptor for use in the INL plug-and-play
framework. (Right) GeneralPowerFlowToFrequency adaptor for use in the INL plug-
and-play framework. (Red circle represents the electrical port, with inputs and outputs
equal to the aforementioned variables in the section).. 20

Figure 22. Incorrect level for proper export as FMI/FMU. Control system has not been declared
and is replaceable from a higher level within the HYBRID repository......................... 21

Figure 23. Correct level from which to begin FMI/FMU preparation. Control system has been
selected via the drop-down menu available in the custom parameters section, shown on
the left. (Red dots are electrical flow ports)... 22

Figure 24. Preparing a natural gas turbine to be converted into an FMU. The inputs into the
system are the peaking demand and the connection points for electricity backflow into
the turbine model. The output is the electrical power as a real value.............................23

Figure 25. Export settings from Dymola 2021x... 24
Figure 26. Importing FMU steps in Dymola 2021x... 25
Figure 27. Import settings from Dymola 2021x... 25
Figure 28. Proper import and use of a co-simulation FMU in Dymola..26
Figure 29. FMI settings for the natural gas turbine FMI/FMU in co-simulation mode. The

communication interval was every 0.12 seconds, with an internal solver tolerance of
1e-6. The internal solver was the Dymola specific DASSL solver................................ 27

Figure 30. Comparison of Dymola model results to co-simulation and model exchange FMU
results. Communication intervals for co-simulation = 0.12 seconds and 1 second........28

Figure 31. Translation of the Modelica turbine generator model into an FMU-ready design........29
Figure 32. Transition from a Modelica model to an FMI-based simulation...................................30
Figure 33. Comparison of turbine output results between the original model and model exchange

FMU..30
Figure 34. New structure of the repository... 32

ix

Figure 35. An example of tests run in the ROOK regression system... 35
Figure 36. Status of the required SQA documentation for the HYBRID modeling repository......37
Figure 37. RAVEN framework scheme..39
Figure 38. External model API... 40
Figure 39. FMI/FMU model skeleton in RAVEN.. 41
Figure 40. FMI/FMU co-simulation protocol coupled with RAVEN.. 42
Figure 41. FMI/FMU model exchange protocol coupled with RAVEN.. 43
Figure 42. External model FMIFMU example RAVEN input file...43
Figure 43. Construction process for surrogate models in RAVEN.. 44
Figure 44. RAVEN ROM cross-validation scheme..45
Figure 45. RAVEN AI FMI/FMU exporting process...46
Figure 46. Example RAVEN input file to export AI as FMIs/FMUs...47
Figure 47. RAVEN’s current FMI/FMU exporting capabilities...47
Figure 48. RAVEN hybrid model scheme..48
Figure 49. Integrated energy park consisting of a nuclear reactor (NPP), Energy Manifold (EM),

Balance of Plant (BOP), Switch Yard (SY), Electric Batteries (Battery), Infinite Grid
(IG), and a Natural Gas turbine (NG). The natural gas turbine is to be exported as an
FMU..50

Figure 50. Preparing the natural gas turbine for conversion into an FMU. The inputs into the
system are the peaking demand and connection points for electricity backflow into the
turbine model. The output is the electrical power as a real value.................................. 51

Figure 51. Integrated energy park consisting of a nuclear reactor, electric batteries, and a natural
gas turbine replaced by a co-simulation FMU..52

Figure 52. Top) Five-hour simulation of the natural gas turbine power vs. setpoint demand for the
integrated energy park in regard to Modelica-only model, co-simulation FMI, and
model exchange FMU. Bottom) Closeup shot of the turbine demand vs. turbine output
for the different FMI versions. Note that all agree reasonably well. Co-simulation
communication interval = 1 second..53

Figure 53. Simplified model of the FMI for RAVEN surrogation... 54
Figure 54. Comparison of the Modelica/Dymola GTTP.fmu response (P_flow) and the RAVEN

AI-based GTTProm.fmu...55
Figure 55. Closeup of the comparison of the Modelica/Dymola GTTP.fmu response (P_flow) and

the RAVEN AI-based GTTProm.fmu.. 56
Figure 56. Integrated energy park (excluding the turbine) FMI/FMU generated with Dymola.....57
Figure 57. Integrated energy park FMI/FMU, including the Dymola GTTP model...................... 58
Figure 58. Integrated energy park FMI/FMU, replacing the Dymola GTTP model with the

RAVEN AI-based FMI/FMU...58
Figure 59. Co-Simulation FMI/FMU (Dymola) vs. RAVEN AI-based FMI/FMU for a 5-hour

simulation of the turbine power vs. setpoint demand for the integrated energy park.... 59

x

Figure 60. Co-Simulation FMI/FMU (Dymola) vs. RAVEN AI-based FMI/FMU closeup shot of
turbine demand vs turbine output... 59

Figure 61. Proposed master simulator within RAVEN.. 61

TABLES
Table 1. Synopsis of Modelica test cases..32

xi

Page intentionally left blank

xii

ACRONYMS

AI Artificial Intelligence
API Application Program Interface
CPU Central Processing Unit
FMI Functional Mock-Up Interface
FMU Functional Mock-Up Unit

FORCE Framework for Optimization of ResourCes and Economics ecosystem
FOM Figure of merit
HTSE High Temperature Steam Electrolysis
IES Integrated Energy Systems
INL Idaho National Laboratory
NHES Nuclear Hybrid Energy Systems
RAVEN Risk Analysis and Virtual Environment
ROM Reduced-order model
SMR Small Modular Reactor
SQA Software Quality Assurance
V&V Validation and Verification

xiii

Page intentionally left blank

1

1. INTRODUCTION
Grid demand variability is an inherent part of the modern dynamic lifestyle. The addition of

renewable energy (e.g., wind and solar) technologies introduces variability into the grid supply.
As renewable energy integration continues to grow, variability will further increase. The
Department of Energy Office of Nuclear Energy (DOE-NE) Integrated Energy Systems (IES)
Program, led by Idaho National Laboratory (INL), is researching the effects the impact of
increasing variability on grid reliability and generator profitability, and is also investigating the
complementary role of non-electric applications of these generators. IES involve the design,
integration, and coordinated operation of several complex, traditionally standalone systems. The
control algorithms involved are unique to each application and component design. IES
architecture can include process steam applications, thermal energy storage, and the presence of
intermittent energy sources such as wind and solar, as illustrated in Figure 1.

Figure 1. Example IES architecture, illustrating thermal and electrical interconnection to support
hydrogen production and chemical conversion.

The goal of these systems is to operate as economically and efficiently as possible. For
integrated energy parks that incorporate thermal storage, this means operating thermal generators
at full power and storing excess energy during times of low total demand, then discharging that
energy during times of high demand.

Since early 2013, to accommodate the vast array of possibilities introduced by integrated
energy parks, the IES program team has been developing a library of high-fidelity process
models in the Modelica modeling language [1]–[4]. Modelica is a non‑proprietary, object-
oriented, equation-based language for conveniently modeling complex physical systems. It is
inherently time-dependent and enables the swift interconnection of independently developed
models. As an equation-based modeling language that employs differential-algebraic equation

2

solvers, Modelica allows users to focus on the physics of the problem rather than on the solving
technique, thus enabling faster model generation and, ultimately, analysis. This feature,
alongside system flexibility, has led to widespread use of Modelica for commercial applications
throughout the industry. System interconnectivity and the ability to quickly develop novel
control strategies while still encompassing overall system physics is why INL chose to develop
the IES framework in the Modelica language.

The dynamic physical models created in Modelica are a cornerstone of the IES program.
These models are used to create system architectures and characterize the system inertia, thermal
losses, and the efficiency of integrated systems. These physical models help map physical
performance into economic performance, allowing for system-level optimization. In addition, the
models are used to test innovative system-level control strategies for interconnected thermal
generators. However, it is noted that, for real-world applications, it is not always practical to
rewrite a model in Modelica; instead, interoperability with Legacy FORTRAN, C, Python, or
other codes may be required.

To accomplish this, the IES Program is seeking to modify HYBRID, the existing physical
modeling repository, to be consistent with the “plug-and-play” approach in Modelica/Dymola
models using Functional Mock-Up Units (FMUs), Functional Mock-Up Interfaces (FMIs), and
machine-learning techniques (see Figure 2). The final product will greatly enhance the physical
modeling interoperability within INL’s Framework for Optimization of ResourCes and
Economics ecosystem (FORCE) that is used to solve system/grid level optimization problems
[5],[6].

Figure 2. Plug-and-play framework environment.

3

This report summarizes the fiscal year (FY) 2020 efforts to create a plug-and-play repository
of process models using the existing HYBRID repository, FMIs, FMUs [4], and the newly
developed capabilities in the Risk Analysis and Virtual Environment (RAVEN) software for
exporting artificial intelligence (AI)-based FMI/FMU models. The document characterizes and
demonstrates the capabilities and improvements made to the previously-developed HYBRID
repository of Modelica models for use as a software-quality-assured (SQA) plug-and-play
system within FORCE.

The infrastructure of the GitHub repository that hosts the HYBRID repository was also
enhanced. These improvements, described later in full detail, include the development (using the
RAVEN-based ROOK regression system) of a Dymola output “differ” script for use with the
commercially available Modelica-based modeling and simulation environment (i.e., a Dynamic
Modeling Laboratory [Dymola] version 2021 FD01 [7]), inclusion of the Oak Ridge National
Laboratory (ORNL) TRANSFORM library as an automatic submodule [8], creation of a user
manual [9], and development of component-level regression tests for each Modelica model.

Extensive work was carried out on the deployment of methods for constructing RAVEN AI-
based models compliant with the FMI/FMU standard. Such work represents the necessary initial
development for deploying the “flexible ecosystem” (plug-and-play) concept, since it allows for
replacement of high-fidelity Modelica models (or any other FMI/FMU-compliant model) with
RAVEN-generated AI surrogate models. This capability enables the deployment of acceleration
schemes for analyzing IES.

The Conclusions section of this report highlights the high flexibility achieved via the plug-
and-play framework, possible shortcomings of the approach, and areas for further enhancement.

2. FUNCTIONAL MOCK-UP INTERFACES AND UNITS
This section briefly describes the FMIs and FMUs. As per the Modelon website

(https://www.modelon.com): “FMI is an open standard for exchanging dynamical simulation
models between different tools in a standardized format.”

FMIs were first introduced by Dassault Systems under the name MODELISAR in 2008.
FMIs define a standardized interface for use in computer simulations to develop complex cyber-
physical systems. Additionally, FMIs/FMUs can be exported as binary files, enabling industry
partners to exchange and simulate proprietary information safely and securely, without potential
information leakage.

The FMI standard describes an open format for exporting and importing simulation models
using a common data exchange nomenclature. In other words, the FMI standard allows the user
to retain the same model while selecting the tools best suited for each type of analysis.

In order to be executed, an FMI is always “shipped” with an FMU. An FMU is the
executable that implements the FMI. During exportation of an FMU, an FMU archive is
generated from a systems model, whereas during an FMU import, a systems model is generated
from an FMU archive.

FMUs contain the following:
- A model description XML file: This file contains information about the model (e.g.,

variable definitions: type, unit, description, etc.) and other more general model
information, such as model name, generation tool, and FMI version.

https://www.modelon.com

4

- Model equations: A model can be described using ordinary differential equations,
algebraic relations, and discrete equations—including time, state, and step events.
These equations can in turn be represented by a small set of C functions. The C code is
then distributed in the FMU in source and/or binary form, and one FMU can contain
binaries for more than one platform and/or platform version.

- Optional resource files: Other optional files might be included in the FMU, such as
documentation files (HTML), model icons (bitmap files), maps and tables, and other
libraries or dynamic link libraries (DLLs) used in the model.

The FMI/FMU standard currently specifies two types of protocols:
- FMI/FMU for model exchange (import and export)
- FMI/FMU for co-simulation (master and slave).

The main difference between these two protocols is that, in model exchange, the FMU is
simulated using the importing tool's solver, whereas in co-simulation, the FMU is shipped with
its own solver.

The FMI for model exchange allows FMUs to be used in offline or online simulation—with
several FMUs potentially being connected—or in embedded control systems on microprocessors.

2.1 Co-simulation
Figure 3 shows the information flow and scheme of FMIs/FMUs in a co-simulation

configuration. The co-simulation (CS) configuration is characterized by:
- Standalone black-box simulation components
- Data exchange being restricted to discrete communication “checkpoints”
- Between two consecutive communication checkpoints, the system model is solved by

its internal solver.

In summary, the goal of a co-simulation operation is to individually compute the solution of
time-dependent coupled systems and have them communicate back and forth at predetermined
time steps, ∆t, known as communication steps (or checkpoints). The simulation is independently
performed between all the subsystems, and at each ∆t there is a communication and transfer of
boundary conditions between subsystems. Because of the independent nature of these
subsystems, an FMI for co-simulation is the easiest method to implement. However, due to the
different solver types and the need to specify ∆t, the scheme between systems becomes fully
explicit. Being fully explicit, it is crucial to identify a small enough ∆t to ensure system stability.
This step size limitation ultimately reduces the simulation speed.

5

Figure 3. Co-simulation FMI/FMU scheme.

2.2 Model Exchange
Figure 4 shows the information flow and scheme of an FMI/FMU in a model exchange (ME)

configuration. As shown in the figure, the model exchange configuration can be described as
having the following characteristics:

- Standardized access to model equations
- Models described by algebraic, differential, and discrete equations
- Monitoring of time, state, and step events
- Models that must be solved using solvers provided by the embedding environment.

In summary, in a model exchange FMI/FMU, the numerical solver is supplied by the
importing tool. The FMU provides functions to set the state/inputs and compute the state
derivatives. The solver in the importing tool will determine what time steps to use and how to
compute the state at each subsequent time step.

6

Figure 4. Model exchange FMI/FMU scheme.

2.3 Advantages of Each Protocol
Each of the two protocols described in the previous section, namely CS and ME, offer certain

advantages.
Co-simulation

1. Not all tools support both protocol types. Support for CS is more common than for
ME.

2. The numerics of the model may require a specific solver available in the exporting
tool but not in the importing tool.

3. The FMU may represent a sampled data system (e.g., signal processing or control
algorithms) not governed by differential equations and therefore more naturally
expressed as a co-simulation FMU.

4. The exporting tool may have a more efficient implementation of the solver than the
importing tool.

Model exchange
1. An explicit scheme is avoided, since the entire solve is done simultaneously.
2. Dynamic time stepping is allowed.
3. The importing tool could have a more efficient implementation of the solver than the

exporting tool.

7

3. MODELICA TO FMU ADAPTATION
Modelica is a physical modeling language that relies on an acausal (rather than causal)

assignment of equations. This means that an equation can only appear once, and that the
translator and system solvers will determine the proper way to assign the flow of information. In
addition, since Modelica is a physical modeling language, there are the assignments of special
variable containers “flow” and “stream” that have an inherent physical representation in the
code. Flow variables have a direction and must sum to zero in a “connection.” The “stream”
qualifier is used to qualify when a given element in a connection has an intensive property
flowing through a connector. These “connectors” include a singular flow variable with several
stream variables alongside it. For example, a “fluid port” is a connector that has the mass flow
rate as the “flow” variable and enthalpy as the “stream” variable. Mass flow is what physically
goes through the connector, while enthalpy is a property of the mass flow. This nuance in
variable types is particularly important when considering the translation of Modelica models into
FMIs and FMUs. FMIs can only import and export real input/output signals. These signals
cannot retain the physical properties seen in Modelica, thus requiring special adaptors to translate
them back into physical values for use in other Modelica models.

3.1 Adaptors
For connections between FMIs and other Modelica models within the Dymola platform, a set

of standardized variables and adapters are needed to properly transmit energy values among
subsystems. This is particularly true if the interconnection is between two physical models, such
as a nuclear power plant and a turbine. This is because the physical models contain “ports,” as
shown in Figure 5.

Figure 5. Fluid ports (note that “ports” are a container method in Modelica used to transfer several pieces
of physics-based information within a single “connector”).

Each fluid port contains:
 Mass flow (flow variable), m_flow
 Conditional enthalpy (stream variable), h_outflow
 Pressure, P
 Trace substance fraction (stream variable), Ci
 Mass fraction (stream variable), Xi.

8

Each electric port contains:
 Power (flow variable), W
 Frequency, f

To properly transition from ports to input and output signals, the individual components of
the ports must be separated out and assumed to be either an input or an output. This is illustrated
in Figure 6, with each fluid port being separated into its five constituent pieces (mass flow,
enthalpy, pressure, mass fraction, trace substance fraction), and the electric port being separated
into its two constituent parts (power and frequency).

Figure 6. Transition from a Modelica physical model into an FMU.

In the HYBRID repository package structure, a set of adaptors was created and added to the
utility folder to enable users to convert an existing Modelica model into a model ready for export
as a FMU. The package placement is seen in Figure 7. Further details on each FMI template and
interface are outlined in the next section.

9

Figure 7. FMU template folder location within the larger Nuclear Hybrid Energy Systems (NHES) folder
as part of the HYBRID Repository.

Fluid Port Adaptors
Within the Utility.FMI_Templates folder is an adaptor package created specifically for

Modelica standard library fluid adaptors. This package is called MSLFluidAdaptors, and it
models acausal to causal adaptors. This folder was created in unison with Modelon. Within this
folder are two adaptors, shown in Figure 8. One is a “pressure to mass flow” adaptor, aptly
named PressuretoMassFlow. This adaptor’s fluid port is best connected to a flow port of some
sort (e.g., valves, resistance, pipe model). The inputs to this model are the pressure at the
interface, upstream enthalpy from the causal side, upstream mass fraction from the causal side,
and upstream trace composition from the causal side. The outputs are the acausal mass-flow rate,
upstream enthalpy from the acausal side, upstream mass fraction from the acausal side, and
upstream trace composition from the acausal side.

The second adaptor, called the MassFlowtoPressure adaptor, is a “mass flow to pressure”
adaptor. This adaptor’s fluid port is best connected to a volume port (e.g., pressure sink, tank
model). The inputs to this model are the causal mass-flow rate, upstream enthalpy from the
causal side, upstream mass fraction from the causal side, and upstream trace composition from
the causal side. The outputs are the pressure at the interface, upstream enthalpy from the acausal
side, upstream mass fraction from the acausal side, and upstream trace composition from the
acausal side.

10

Figure 8. (Left) PressuretoMassFlow adaptor. This adaptor is best connected to a resistance port able to
set the output mass flow rate. (Right) MassFlowtoPressure adaptor. This adaptor is best connected to a
volume port able to set the output pressure. Note: Both of these adaptors were created by Modelon for use
in the INL plug-and-play framework as part of an FMI/FMU course subcontract.

Figure 9 illustrates the usage of the two adaptors on a single model involving reversible flow.
The model is of a series of two fully open valves connected to a volume source positioned
between them, and a pressure source on either side of the valves. The system fluid is moist air
from the Modelica standard library. The pressure source is then subjected to a 1 Hz oscillatory
frequency on the pressure system, as would be present in a fast-moving pressure chamber, while
the pressure sink remains at a constant pressure. In normal operations, this system will have a
reversible flow, as the pressure of the source oscillates about the pressure sink’s pressure. Such
scenarios have been challenging to meet with FMIs and FMUs, due to the reversible nature of
the mass flow. With the new adaptors, this reversible flow issue can be met.

11

Figure 9. An example (using adaptors) involving two pressure sources using moist air, one of which
oscillates in pressure, causing a mass flow reversal. The unit in the red box will become an FMU.
(k=Temperature input to pressure flow boundary; freqHz = pressure frequency oscillation placed on
pressure_source).

The unit inside the red box in Figure 9 was exported as both a model exchange and co-
simulation FMU, as shown in Figure 10 and Figure 11. All systems were then run for 10 seconds
of simulation time. The results are depicted in Figure 12.

Figure 10. Example of a reversible flow using two pressure sources, moist air, and a model exchange
FMU. (k=Temperature input to pressure flow boundary; freqHz = pressure frequency oscillation placed
on pressure_source).

12

Figure 11. Example of a reversible flow using two pressure sources, moist air, and a co-simulation FMU.
(k=Temperature input to pressure flow boundary; freqHz = pressure frequency oscillation placed on
pressure_source).

13

Figure 12. Comparison of mass flow to the pressure sink across the original model, model exchange
FMU, and co-simulation FMU (timestep = 0.02 seconds).

The results showcase that, by utilizing the fluid port adaptors, reversible flow is achievable in
both the model exchange and co-simulation FMIs/FMUs. However, these capabilities carry
additional overhead in regard to central processing unit (CPU) time. Model exchange for this
particular model increases the simulation time from 2.364 to 6.749 seconds. Co-simulation with
a 0.02-second communication interval took 10.795 seconds. Even so, co-simulation still shows
the largest error, due to co-simulation models inherently being an explicit solve. However, given
a sufficiently small communication interval, and depending on the dynamics of the model, an
acceptable solution can be achieved.
Thermal Port Adaptors

Within the Utility.FMI_Templates folder is an adaptor package created specifically for
Modelica standard library thermal adaptors. This package is called MSLHeatAdaptors, and it
models acausal to causal adaptors. These models were initially made available in the Modelica
standard library and have been augmented with additional examples and placed within the NHES
package for ease of access relative to other FMI adaptors. Two adaptors are included, one being
the GeneralHeatFlowToTemperature adaptor. The inputs to this adaptor are the acausal heat flow
port, causal heat flow, and optional causal first and second derivatives of heat flow. The outputs
are the temperature and the optional first and second derivatives of temperature.

14

The second adaptor is the GeneralTemperaturetoHeatFlow adaptor. The inputs to this adaptor
are the acausal heat flow port, causal temperature, and optional causal first and second
derivatives of temperature. The outputs are the heat flow and the optional first and second
derivatives of heat flow.

Figure 13. (Left) GeneralTemperatureToHeatFlow adaptor for use in the INL plug-and-play framework.
(Right) GeneralHeatFlowToTemperature adaptor for use in the INL plug-and-play framework.
(T=temperature, dT = first derivative of temperature, d2T = second derivative of temperature, Q = heat
flow, der(Q) = first derivative of heat flow, der2(Q) = second derivative of heat flow.) Note: only T and Q
are required the derivative values are optional for stability.

Figure 14 illustrates the usage of the two adaptors in a single model involving two methods
of heat port usage. The upper model demonstrates how to export two heat capacitors and connect
them together in a target system. This requires that one of the capacitors (here, DirectCapacity)
be defined to have states, and that the temperature and derivatives of the temperature are
provided in the interface. The other capacitor (here: InverseCapacity) requires a heat flow in
accordance with the provided input temperature and derivative of temperature. The lower part
demonstrates how to export a conduction element that only requires temperatures for its
conduction law, and connects this conduction law to both the heat capacitors in a target system.
Both models will be translated into a model exchange and co-simulation model, as shown in
Figure 15, Figure 16, Figure 17, and Figure 18. The results are compared in Figure 19 and Figure
20.

15

Figure 14. Example meant to demonstrate the FMU variants available with the thermal FMU adaptors.
The upper part demonstrates how to export two heat capacitors and connect them together in a target
system. The lower part demonstrates how to export a conduction element that only requires temperatures
for its conduction law, and connects this conduction law to both heat capacitors in a target system.

16

Figure 15. Demonstration of an FMU variant example that uses model exchange FMUs for the thermal
heat port adaptors.

Figure 16. Collapse of the upper part of Figure 14 into a single FMU for co-simulation. This is required
because the frequency between the direct and inverse conduction problem is so fast that a single cut
between the two could not be made without instabilities occurring.

17

Figure 17. Upper model of Figure 14 connected with the combined direct/inverse co-simulation FMU.

Figure 18. Lower model of Figure 14, co-simulation FMU.

The results showcase that, by utilizing the thermal adaptors, acceptable results in terms of the
heat flow between models can be achieved via both model exchange and co-simulation
FMIs/FMUs. However, these capabilities carry additional overhead in regard to CPU time, as
was the case in the fluid port scenario. The co-simulation mode, though theoretically easier to
export to external codes thanks to its inclusion of a solver, required the most augmentation, due
to the fast system dynamics. This limitation required the FMU to include both the direct and
inverse capacitors within a singular model, as shown in Figure 16, otherwise a divergent solution
was acquired. Even with this additional step, the co-simulation solve still showed the largest
error, as depicted in Figure 19 and Figure 20. This is because co-simulation models are
inherently an explicit solve. However, given a sufficiently small communication interval and
depending on the dynamics of the model, an acceptable solution can be achieved.

18

Figure 19. Direct/inverse simulation results for the original, model exchange, and co-simulation
(communication interval: 0.002 seconds) FMU runs. (Top) Heat flow into the capacitor. (Bottom)
Capacitor 3b temperature.

19

Figure 20. Conduction (lower model) simulation results for the original, model exchange, and co-
simulation (communication interval: 0.002 seconds) FMU runs. (Top) Heat flow into the capacitor.
(Bottom) Capacitor 3b temperature.

Electrical Port Adaptors
Within the Utility.FMI_Templates folder is a package created specifically for electrical

adaptors. This package is called ElectricalAdaptors, and it models acausal to causal adaptors.
Two adaptors are included (see Figure 21), one being the GeneraPowerFlowToFrequency
adaptor. The inputs to this adaptor are the acausal electrical port, causal power, and optional
causal first and second derivatives of power. The outputs are the frequency and the optional first
and second derivatives of frequency.

The second adaptor is the GeneralFrequencyToPowerFlow adaptor. The inputs to this
adaptor are the acausal electrical port, causal frequency, and optional causal first and second
derivatives of frequency. The outputs are the power flow and the optional first and second

20

derivatives of power flow.

Figure 21. (Left) GeneralFrequencyToPowerFlow adaptor for use in the INL plug-and-play framework.
(Right) GeneralPowerFlowToFrequency adaptor for use in the INL plug-and-play framework. (Red circle
represents the electrical port, with inputs and outputs equal to the aforementioned variables in the
section).

3.2 FMI Construction Guide
To properly create and utilize a model as an FMI/FMU, the following five steps must be

accomplished.
1. Model Preparation
2. Adaptors
3. Export
4. Import
5. Simulation

This section seeks to provide step-by-step guidance on how each of these steps can be
accomplished.

21

Model Preparation
For a model to become a usable FMU, it must contain all the required input/output variables

within itself, aside from those designated to come from an outside model. This requirement
means that, for units featuring interchangeable control systems, a particular control system must
be declared via a top-level declaration in an example style file. An example of both an incorrect
and a correct file format for a natural gas peaking turbine are shown in Figure 22 and Figure 23,
respectively. In Figure 22 the natural gas turbine model includes the basic constituent parts for its
simulation (compressor, turbine, combustion chamber, inertial generator shaft, generator, fuel
controllers, and geometrical data assumptions). But in Dymola if this model is run it is missing a
selected control system for the sensor and actuator bus as this is a “replaceable” component.
Meaning the model needs to be imported within a new model to allow us to select the control
system.

Figure 22. Incorrect level for proper export as FMI/FMU. Control system has not been declared and is
replaceable from a higher level within the HYBRID repository.

This placement within a new model is shown in Figure 23. In this case the model from Figure 22
is placed within a new model, the electric port is attached to a frequency boundary condition and
if we double click the natural gas turbine icon the table on the left pulls up where the control
system can be selected and values can be imported for system size and maximum power output.
Once this control system is selected the model is now ready to begin model preparation for
FMI/FMU exportation. Note: the control system selected will be the control system exported
with the FMI/FMU.

22

Figure 23. Correct level from which to begin FMI/FMU preparation. Control system has been selected via
the drop-down menu available in the custom parameters section, shown on the left. (Red dots are
electrical flow ports).

Adaptors
Now that the proper model has been created, the variables designated to come from outside

the FMU must be declared as a real “input” or “output” variables, as demonstrated in Figure 6.
To accomplish this, the adaptors can be employed in the manner previously outlined. For the
natural gas turbine example illustrated in Figure 23, the electric port must be converted into real
inputs/outputs using the PowerFlowToFrequency adaptor described in the previous section. In
addition, the control system of the natural gas turbine requires a top-level demand signal to
communicate the grid demand at each time interval. To implement such communication into the
model, an additional real input variable, “SES_Demand,” was created. With the adaptor and new
input signal created, the model took the form depicted in Figure 24, and is ready for export as an
FMU. This procedure of using an adaptor to transform ports into their real input/output
components, and creating additional inputs/outputs for declared variables, works well for simple
models and models intended for use in model exchange mode. For complex models planned for
simulation in co-simulation mode, use of adaptors may prove challenging if the initialization of
the models is not well-defined. This is due to the explicit nature of co-simulation modeling.
Further details on this will be given in later sections of this report.

23

Figure 24. Preparing a natural gas turbine to be converted into an FMU. The inputs into the system are the
peaking demand and the connection points for electricity backflow into the turbine model. The output is
the electrical power as a real value.

Export
Dymola offers several ways to export a model as an FMU, as shown in Figure 25. The FMU

can include three different types of export: model exchange, co-simulation using the CVode
solver, and co-simulation using various Dymola solvers.

In model exchange, the component model will be exported without a solver, as it is assumed
that the importing tool will provide the solver. For co-simulation models, CVode and Dymola
solvers can be exported with the component model for use within other models. In general,
CVode solvers are sophisticated enough for most models, and export can be selected in either C-
code or binary code, depending on the purchased Dymola license. In the event a particular
Dymola solver is required to compile a component model, the co-simulation export can only be
accomplished as a binary, thus protecting the proprietary solver information held by Dassault
systems. However, binaries are operating-system dependent, so care must be taken to ensure that
export of binary FMUs is conducted on the same operating system as the planned importing tool.

24

Figure 25. Export settings from Dymola 2021x.

Import
Once the model has been exported and an FMU created, the model will be present as an .fmu

file. In the case of the natural gas turbine, it will be called “SES_GTTP.fmu.” To import this file
in Dymola, click File Open Import FMU, as shown in Figure 26.

The FMU can be imported in either model exchange or co-simulation mode, as per Figure
27. This selection should be consistent with the export options included in the FMU. If the
desired import mode is different than the model of the original FMU, the imported FMU will
fail.

Including the “structured declaration of variables” option retains the structured file tree of
variables that were present in the original model, enabling the user to look inside the FMU as
though it were the original Dymola model. If this option is not selected, a single large list
featuring all the variables available for access will be made available to the user.

25

Figure 26. Importing FMU steps in Dymola 2021x.

Figure 27. Import settings from Dymola 2021x.

26

Simulation
After the import step, the model can be used in place of the main component, as shown in

Figure 28. In the system, it is important to ensure that all materials, initial conditions, nominal
conditions, and parameter setpoints are consistent across the boundaries between the FMU and
the rest of the model. This is particularly important because FMUs take real inputs and provide
the surrounding model with outputs that have no physical constraint placed upon them. This
reduces the number of checkpoints that the underlying application program interface (API)s has
in order to ensure a consistent model. This places more onus on the engineers/researchers.

When using model exchange, the model will act similarly to the primary model, as the
equation set remains exposed to the underlying import tool solvers. Conversely, in co-simulation
mode, a specified “communication step” size must be selected, at which point the models will
export results for communication with the surrounding external models. Selecting a small
enough communication step to ensure that all the dynamics are captured is critical, but selecting
a time-step communication interval that is too small greatly reduces the system’s simulation
speed.

Figure 28. Proper import and use of a co-simulation FMU in Dymola.

27

Figure 29. FMI settings for the natural gas turbine FMI/FMU in co-simulation mode. The communication
interval was every 0.12 seconds, with an internal solver tolerance of 1e-6. The internal solver was the
Dymola specific DASSL solver.

To test the FMU, the physical model was run in co-simulation, model exchange, and normal
Modelica-only mode. The resulting turbine output is illustrated in Figure 30. For the three
aforementioned modes, all the models converged to the same solution over the 60-second
simulation time, with real-time simulation speeds of 1.316, 0.147, and 0.064 seconds,
respectively. The co-simulation FMI settings are shown in Figure 29. In all cases, the simulation
speeds are slower for FMU representations. This can be attributed to the increased overall
number of variables that must be simulated due to the need for additional boundary blocks to
accommodate real inputs/outputs. In addition, for co-simulation, the limiter on simulation speed
is directly impacted by the communication step size and the nonlinearity of the coupled system.
For example, increasing the communication step size from every 0.12 seconds to every second
reduces simulation time from 1.316 seconds to 0.514 seconds. However, as demonstrated in
Figure 30, this comes at the price of accuracy. Therefore, it is essential that, for co-simulation
models, the communication step occur at points with slow-moving physics in order to allow the
system a larger communication step size.

28

Figure 30. Comparison of Dymola model results to co-simulation and model exchange FMU results.
Communication intervals for co-simulation = 0.12 seconds and 1 second.

3.3 Turbine Replacement Example
The creation of FMUs makes it possible to take a model from one coding language and

encapsulate it in a standardized format for use within another coding language. To test this
functionality with the more complicated fluid equation set of water, a natural circulation small
modular reactor (SMR) set was chosen. The modeling set, shown in Figure 32, includes the
reactor, energy manifold, turbine generator, and electric grid—all modeled in the Modelica
language. The turbine generator set was then converted from a Modelica model into an FMU to
ensure that all the proper data were input into and transferred between the models. The initial
step was to implement the adaptors (discussed in the previous section) that transform the fluid
ports into constituent real outputs, as shown in Figure 31. The progression of translation is
shown in Figure 32, going from the Modelica-only model to a model exchange FMU that is then
included in the model.

29

Figure 31. Translation of the Modelica turbine generator model into an FMU-ready design.

The control system within the turbine generator model is maintained through the translation
process and can fulfill the desired setpoints within the turbine model. Then, the model is
exported into a model exchange FMU and reimported into the Modelica framework. A
comparison of the turbine power output is depicted in Figure 33, showing that the different
versions of the model are in close agreement with each other. The differences can be attributed to
minute variations in initialization subroutines that occur in the initialization phase of the run. The
FMU-based results and input-based Modelica results are nearly identical, and both simulations
were able to meet the turbine demand setpoints. It is worth noting that a version using co-
simulation was attempted, but instabilities arising from the explicit time-stepping scheme could
not be overcome; thus, the co-simulation was deemed unsolvable. Such scenarios become more
common as the complexity of the models increases. While co-simulation is the easiest version of
FMI to implement, instabilities such as these also increase the possibility of simulation
roadblocks.

30

Figure 32. Transition from a Modelica model to an FMI-based simulation.

Figure 33. Comparison of turbine output results between the original model and model exchange FMU.

31

4. HYBRID REPOSITORY
At the beginning of the IES Project, a version control repository was delivered in order to

provide a common location for the deployment of system and component models and analyses
developed and constructed with Modelica/Dymola and RAVEN. To initiate the construction of a
flexible plug-and-play Modelica/RAVEN framework for IES analysis, a restructuring of the
version control repository (HYBRID, available at https://hpcgitlab.inl.gov/hybrid/hybrid and at
the open-source repository location https://github.com/idaholab/HYBRID) was performed.

The following main tasks were performed for this specific activity:
 Usage of the RAVEN regression test system (named ROOK) for deployment of a single,

integrated testing platform for both Modelica and Dymola models/analysis and RAVEN
workflows. The testing system was linked with the automatic continuous integration tool
for the automatic testing of the models and analyses when new modifications are added in
the repository.

 Folder structure optimization for easier browsing and usage of the version control
repository.

Figure 34 shows the new repository structure, with the following main folders identifiable:
 Models: contains the Modelica and Dymola models
 archive: where old examples and analyses (i.e., documents, models, input files, etc.) are

archived and stored to guarantee reproducibility of published results
 developer_tools: contains utility scripts, methods, and files required for the automation,

deployment, and verification of the tools and software products of the HYBRID
repository. This folder contains all the scripts for the automatic generation of software
quality assurance (SQA) documentation (e.g., requirements, traceability matrix, etc.).

 scripts: contains scripts for installing the HYBRID repository (e.g., scripts to create the
HYBRID configuration file). It also contains specialized classes and scripts for the
automatic regression testing system (e.g., output checkers) and Python-based launchers
for Dymola models (dymola_launcher).

 tests: contains all the tests that are automatically executed by the continuous integration
system and are locally executable by running the command “run_tests.”

 TRANSFORM-library: submodule of the Oak Ridge National Laboratory based
TRANSFORM library that provides base models for many of the integrated energy
systems models

 raven: links to the RAVEN repository.

https://hpcgitlab.inl.gov/hybrid/hybrid
https://github.com/idaholab/HYBRID

32

Figure 34. New structure of the repository.

Furthermore, a series of Modelica tests has been added to test the system-level interactions in
the NHES Modelica repository. An example output of the regression system is shown in Figure
35.
Table 1. Synopsis of Modelica test cases.

Test Description
Bouncing Ball Simple test that models a bouncing

ball hitting the ground.
BOP Boundaries Test A Balance of plant system based on

pressure difference
BOP Boundaries Test B Balance of plant system based on

forced mass-flow rate
Desalination 1 Pass Single-stage reverse osmosis

component check
Desalination 2 Pass Second stage reverse osmosis

component check
Desalination 2 Pass Mixing Two-stage reverse osmosis with

mixing
Desalination Reverse Osmosis Fully encapsulated two-stage reverse

33

Module osmosis with mixing
Desalination NHES Basic Controlled desalination NHES

system
Desalination NHES Complex Controlled via signal bus NHES RO

system with parallel osmosis units
FMI Fluid CS Test of the fluid adaptors in a small

problem in co-simulation mode
FMI Fluid CS Test of the fluid adaptors in a small

problem, using model exchange
FMI Heat CS Capacity Test of the thermal adaptors in a

small problem in co-simulation
mode, using a thermal capacitance
model

FMI Heat CS Conduction Test of the thermal adaptors in a
small problem in co-simulation
mode, using a heat conduction model

FMI Heat ME Test of the thermal adaptors in a
small problem in model exchange
(solving both the conduction and
capacitance models simultaneously)

Generic Modular PWR SMR of a NuScale size system with
a pump

GTTP_Test Gas turbine load follow test – 60-
second electric demand oscillation

HTSE Power Test High Temperature Steam
Electrolysis (HTSE) NHES system
based on power input control

HTSE Steam Test HTSE NHES system based on steam
and power input control

Hydrogen Turbine Test Hydrogen turbine load follow test –
60-second electric demand
oscillation

NSSS_test Westinghouse-style four loop PWR
test – 10,000 seconds at nominal
power

Simple_Breakers_Test Test of electrical breakers on an
infinite grid

SMR_4Loop Test of load following a natural-
circulation SMR – 5-hour load
follow simulation

SMR Primary Test Test of the primary loop of a natural-
circulation SMR loop

SMR Nominal Test Addition of nominal power test for a
natural-circulation SMR reactor

Step-Down Turbines Basic set of step-down turbines
Step-Down Turbines Complex Test of a more complex step-down

34

turbine system
Supervisory Control Test Test of the supervisory control

system for receiving input from
external files

Test_Battery_Storage Test of a simple electrical battery
system – logical power flow
simulation

Test_Thermal_Storage Test of a Therminol-66 thermal
energy storage facility through both
charge and discharge cycles

TightlyCoupled_FY18_Battery Complex system of systems from the
2018 case (including electric battery
storage)

Tightly Coupled_FY18_TES Complex system of systems from the
2018 case (including thermal energy
storage [two-tank sensible heat])

Thermocline Cycling Test Test of the hourly cycling of a
single-tank packed-bed thermocline
system

Thermocline Insulation Test Test of the insulation heat loss
through the tank walls of a single-
tank packed-bed thermocline system

While these tests are not exhaustive of the Modelica repository system, they provide a
systems-level understanding of the repository model state. Other tests will be added on an as-
needed basis.

35

Figure 35. An example of tests run in the ROOK regression system.

Other capabilities besides tests were added to the regression system in order to allow for
smoother cross-platform and cross-machine compatibility. These capabilities were necessary
because the commercial platform Dymola by Dassault systems has a series of settings that
control the type of outputs sent to the final solution file. Ensuring that every user has the same
flags turned on/off is unrealistic, since some of the flags are global settings turned on for every
simulation loaded into their particular instantiation of Dymola. To get around this, the ROOK
testing system added the capability to only look at those time steps or time intervals guaranteed
to be included in each simulation of the model, regardless of the flags automatically loaded by
Dymola. To accomplish this, an extra option (either “numberOfIntervals” or “OutputInterval”) is
required in the simulateModel command in the regression system. The option numberOfIntervals
tells Dymola how many output intervals to make, whereas OutputInterval tells Dymola at what
time-step interval an output should be present for comparison. These can be selected in the
Simulation Setup tab of the Dymola graphical user interface (GUI).

Further, a restart file loading capability was added to the Modelica regression system. This
was included because, for complex models, the initialization phase of a simulation can require
the Modelica solvers to spend a significant amount of time finding an initialization point. This is
due to the highly nonlinear nature of the underlying physical equations. One way to avoid such
situations is to provide a restart file to bypass the initialization phase of the simulation. A restart
file is automatically created at the end of each simulation; this is the dsfin.txt file created in the

36

folder from which the simulation was run. This file includes the final values of the previous
simulation, from which the new model can restart. Moving this file to the tests/reference folder
and loading it into the regression system can save a substantial amount of time in regression
testing and provide a consistent starting point for each test, rather than relying on the same
initialization point being found during each regression testing cycle. Full details on how to utilize
and create new regression tests can be found on the HYBRID wiki at
https://hpcgitlab.inl.gov/hybrid/hybrid/wiki or at its open-source location,
https://github.com/idaholab/HYBRID/wiki).

The work covered in this report was propaedeutic for releasing the modeling framework in
the open-source community. Several activities were deployed for open-sourcing of the software:

 User documentation:
- Development of an extensive user manual [9], providing a detailed description of the

models (Modelica and Dymola) and instructions on how to execute them
 SQA documentation (see Figure 36), available both in the INL internal Electronic

Document Management System (EDMS) and the GITHUB website under “./doc/sqa/”.
Such documentation is aimed at collecting the following information:
- Project planning information
- High-level overview touching on our entire project and software development

activities.
- Roles and responsibilities
- Merge request workflow (e.g. code change requests)
- Workflow diagram
- Software development plan
- Documentation of references to other relevant plans and procedures
- Information about the software safety and quality level determinations
- Definitions of software validation and verification
- Methods and procedures for software validation and verification.

And it is composed of the following set of documents:
 HYBRID Software Quality Assurance Plan (PLN-6274) (detailing the SQA procedures

adopted for the development and lifecycle of the HYBRID software framework)
 HYBRID Software Configuration Management Plan (PLN-6274)
 HYBRID Software Test Plan (PLN-6274)
 HYBRID IT Asset Maintenance Plan (PLN-6274)
 HYBRID Verification and Validation Plan (PLN-6274)
 HYBRID Software Design Description (SDD-561)
 HYBRID Software Requirement Specification (SPC-2990)
 HYBRID Traceability Matrix (SPC-2990)

https://hpcgitlab.inl.gov/hybrid/hybrid

37

 HYBRID Configuration Item List (LST-1296).

Figure 36. Status of the required SQA documentation for the HYBRID modeling repository.

5. DEPLOYMENT OF A RAVEN FMI/FMU DRIVER
Previous milestone reports [10],[11] demonstrated the successful execution of the FMIs and

FMUs using external Python-based frameworks (FMPy [12] and PyFMI [13]). Such showcasing
provided the basis for implementing the FMI and FMU interfaces within the RAVEN
framework. The following sections offer a brief overview of the RAVEN code and the
implementation of the driver for FMI/FMU-based models.

5.1 RAVEN Introduction
RAVEN is designed to perform parametric and probabilistic analyses based on the response

of complex system codes. RAVEN can be used to investigate the system response—as well as
the input space—using Monte Carlo, grid, or Latin hypercube sampling schemes, but its strength
lies in the discovery of system features, such as limit surfaces, identifying and separating regions
of the input space leading to system failure, and using dynamic supervised learning techniques.
RAVEN includes the following major capabilities:

38

 Sampling of codes for uncertainty quantification and reliability analyses

 Generation and use of reduced-order models (ROMs) (also known as surrogate models)

 Data post-processing (time-dependent and steady-state)

 Time-dependent and steady-state statistical estimation and sensitivity analysis (mean,
variance, sensitivity coefficients, etc.).

The RAVEN statistical analysis framework can be employed for several types of
applications:

 Uncertainty Quantification

 Sensitivity/Regression Analysis

 Probabilistic Risk and Reliability Analysis

 Data Mining Analysis

 Model Optimization.
RAVEN provides a set of basic and advanced capabilities that range from data generation to

data processing and data visualization. Its mission is to provide a framework/container of
capabilities that engineers and scientists can use to analyze system responses, physics, and multi-
physics by employing advanced numerical techniques and algorithms.

RAVEN was conceived with two major objectives in mind:

 To be as easy and straightforward as possible for scientists and engineers to use

 To allow for straightforward expansion of itself by providing clear and modular APIs
(Application Programming Interfaces) to developers.

The RAVEN software is meant to be approachable by any type of user (computational scientists,
engineers, or analysts). Every aspect of RAVEN was driven by this singular principle, from the
build system to the APIs to the software development cycle and input syntax.

The main idea behind the RAVEN software design remains the creation of a multi-purpose
framework characterized by high flexibility with respect to the possible performable types of
analyses. The framework must be able to construct the analysis/calculation flow at run-time,
interpret the user-defined instructions, and assemble the different analysis tasks following a user-
specified scheme.

5.2 RAVEN Models
In RAVEN, coupling of the system to physical models is performed by the model entity API.

The model entity represents a “connection pipeline” between the input and output spaces. The
RAVEN framework (see Figure 37) provides APIs for the main model categories described
below.
 Codes: The Code model represents the communication pipe between the RAVEN framework

and any system and/or physical code/model. The communication between RAVEN and any
driven code is performed through the implementation of interfaces directly operated by the
framework. The procedure for coupling a new code/application with RAVEN is a
straightforward process. The coupling is performed through a Python interface that interprets

39

the information coming from RAVEN and translates them to the input of the driven code.
The coupling procedure does not require modifying RAVEN itself. Instead, the developer
creates a new Python interface that will be embedded in RAVEN at run-time (no need to
introduce hard-coded coupling statements). If the coupled code is parallelized and/or multi-
threaded, RAVEN will manage the system in order to optimize the computational resources
of both the workstations and High-Performance Computing systems.

Figure 37. RAVEN framework scheme.

 Externals: The External model allows the user to create, in a Python file (imported at
run‑time into the RAVEN framework), its own model (e.g., set of equations representing a
physical model, connection to another code, and control logic). This model will be
interpreted/used by the framework and, at run-time, will become part of RAVEN itself.

 Reduced Order Models (ROMs): Reduced order, AI-based surrogate models, are a
mathematical representation of a system, used to predict a physical system’s selected output
space. The “training” is a process that uses sampling of the physical model to improve the
ROM’s prediction capability (i.e., the capability to predict the status of the system given a
realization of the input space). More specifically, in RAVEN, the ROM is trained to emulate
a high-fidelity numerical representation (system codes) of the physical system.

 Hybrid models: The HybridModel can combine ROMs with any other high-fidelity model
(e.g., Code or ExternalModel). The ROM will be “trained” based on the results from the
high‑fidelity model. The accuracy of the ROM will be evaluated based on the
cross‑validation scores, and the validity of the ROM will be determined via local validation
metrics. After the ROM is trained, the HybridModel can decide which model (i.e., the ROMs

40

or high-fidelity model) to execute, based on the accuracy and validity of the ROMs in a
particular operating region.

 Ensemble models: The EnsembleModel is used to create a chain of Models whose execution
order is determined by the Input/Output relationships among them. If the relationships among
the models evolve in a non-linear system, a Picard’s Iteration scheme is employed.

 Postprocessors: The Post-Processor model represents the container of all the data analysis
capabilities in the RAVEN code. This model is used to process the data (e.g., derived from
sampling of a physical code) in order to identify representative Figures of Merit. For
example, RAVEN uses Post-Processors to perform statistical and regression/correlation
analysis, data mining and clustering, reliability evaluation, topological decomposition, etc.

 RAVEN FMI/FMU Driving System Development.
Development of the FMI/FMU driving system is based on the ExternalModel entity in

RAVEN. As briefly reported in the previous section, the external model (see Figure 38) enables
developers to create, in a Python module or platform, a direct coupling with a model coded in
Python (e.g., a set of equations representing a physical model, connection to another code, and
control logic). Once the external model is constructed, it is interpreted and used by RAVEN,
ultimately becoming, at run-time, part of RAVEN itself.

Figure 38. External model API.

41

Figure 39. FMI/FMU model skeleton in RAVEN.

The ExternalModel API (ExternalModel plugin) was used to develop, in RAVEN, a native
driver for models using the FMI/FMU protocol. Figure 39 shows a snapshot of the “wrapper”
that was developed. The “FMIFMU” RAVEN model implements a generalized method—based
on the RAVEN API and syntax—to import, execute, and process the results of any model
compatible with the FMI/FMU standard. The model consists of the following methods:

- run: The run method (the only required method in the API) aims to execute the FMU
(FMI) for a given input coordinate (or input perturbation). The run method represents
the pipeline between RAVEN and the FMI/FMU model. The method both executes and
collects the results that will be then stored in the object “container,” ready for processing
by RAVEN.

- readExtInput: This method is in charge of reading the user-define input for the
FMI/FMU that needs to be driven. It collects the following information (expandable in
the future, if needed):

 startTime: The start time of the driven FMU (e.g., 0.0 seconds)

 stopTime: The stop time of the driven FMU (e.g., 60 seconds)

 stepSize: The time step size to use for the calculation (e.g., 1.e-2 seconds)

 inputVariables: A list of the input variables (e.g., demand)

 outputVariables: A list of the output variables (e.g., power level)

 fmuFile: The FMU location (e.g., /path/to/myFmu.fmu)
- initialize: This method is invoked right before the model is executed. This method aims

to load the FMI/FMU, instantiate the class, and initialize its settings.
This method is also in charge of performing error checking of the user-defined
settings/options.

- createNewInput: This method, in case of a sampling strategy, is responsible for
translating” the RAVEN info (e.g., the values of sampled variables) into the FMI/FMU
syntax.

42

Figure 40. FMI/FMU co-simulation protocol coupled with RAVEN.

Depending on the type of protocol for the FMI or FMU of interest, two coupling schemes in
the FMIFMU wrapper were developed. Both schemes are encapsulated in the same wrapper and
are executable via the model API in RAVEN.

Figure 40 shows the coupling scheme for FMIs/FMUs when the co-simulation protocol must
be used; RAVEN interacts with the different models via the FMIFMU wrapper that uses FMPy
to import and interact with the FMUs. In this coupling scheme, RAVEN “perceives” the models
imported via FMIs/FMUs just as it would any other external model or code. This protocol is
indicated when the models to connect are loosely coupled (multi-physics feedbacks are not
strong and/or the physics dynamic of the different models act on different time scales, e.g.,
seconds vs. hours or days).

On the other end, Figure 41 shows the coupling scheme for FMIs/FMUs when the model
exchange protocol is used; in this configuration, RAVEN can directly interact with the universal
solver that aims to solve all the models (compatible with the FMI/FMU protocol, in this case
Dymola). This coupling scheme is preferrable when the models are highly nonlinear and the
models are tightly coupled with fast moving dynamics.

43

Figure 41. FMI/FMU model exchange protocol coupled with RAVEN.

Figure 42. External model FMIFMU example RAVEN input file.

Figure 42 shows an example of the portion (in XML) of the RAVEN input file required to
use the FMIFMU wrapper. This XML block is the one processed by the previously-described
method “readExtInput.”. Independently on the type of FMI/FMU that the model will import and
use, the input file specifications do not change; the FMIFMU wrapper will collect the

44

information (co-simulation or model exchange) directly from the FMU (i.e., the <fmuFile>)
after loading.

6. DEPLOYMENT OF RAVEN FMI/FMU EXPORTER FOR AI-BASED
ANALYSIS ACCELLERATIONS

As described in the previous section, the RAVEN framework provides APIs for different
model categories, among which are the ROM, AI-based algorithms. In order to deploy the
acceleration of IES analysis, the ROM (AI) entity is key. Indeed, the ROM is aimed at higher
fidelity surrogate and system simulator-based models (for specific and limited operational
domain) with a set of faster-execution equations that allow for the prediction of Figures of Merit
(of interest) in a span of milliseconds.

Figure 43. Construction process for surrogate models in RAVEN.

45

6.1 RAVEN AI construction
Figure 43 illustrates the standard process of constructing (via optimization) RAVEN

surrogate (AI) models. The surrogate model of interest is trained on a dataset, and its hyper-
parameters (i.e. parameters and characteristics of the surrogate model of interest) are tuned to
maximize the accuracy in predicting the figure(s) of merit (FOMs) of interest. As shown in
Figure 44, the accuracy is assessed by applying statistical methodologies (i.e., cross-validation),
which consists of randomly portioning the dataset into “training” and “testing” datasets. The
“training” dataset is used for constructing the surrogate model, and its prediction is compared
with the “testing” dataset. The prediction accuracy is then assessed using distance metrics (e.g.,
R2 score) between the surrogate model and the testing dataset.

Figure 44. RAVEN ROM cross-validation scheme.

46

The so-constructed surrogate models allow for fast evaluation of the dynamics (or steady
state) of the FOMs of interest. Therefore, such models can accelerate analyses (greatly reduce the
computational time), by replacing high-fidelity physical models with a ROM representation.

6.2 Development of FMI/FMU exporting capabilities for RAVEN AI
To exploit RAVEN AI capabilities, a workflow to export trained (constructed) ROMs using

the FMI/FMU protocol was developed in RAVEN.
The exporting of RAVEN AI is performed according to the following two steps:
1) Exploit the native RAVEN serialization system, which is responsible for serializing (i.e.,

saving in a binary file) already-trained surrogate models that can be loaded in external
(Python-based) packages (outside RAVEN).

2) Use and extend the PythonFMU library (https://github.com/NTNU-IHB/PythonFMU),
which is a lightweight framework that enables the packaging of Python 3 code as co-
simulation FMUs (following FMI version 2.0).

To deploy any model in an FMI/FMU-compatible framework, that model (i.e., ROM) must
be able to be inquired at each “time step,” meaning that the model must allow for execution as an
integrated model and not as a “black-box simulation”. To achieve this goal, the RAVEN ROM
APIs were upgraded by implementing a “method” to solve the surrogate model at each time step.
This modification, in conjunction with the two steps reported above, allows for RAVEN ROM
models to be exportable as FMI/FMUs.

Once the RAVEN AI is trained following the standard process reported in section 6.1, it can
be finally exported following the steps reported in Figure 45. An example of the RAVEN input
blocks is reported in Figure 46, where:

- In the <Models> node, the RAVEN ROM (AI) is shown.
- In the <Files> node, the output FMI/FMU filename is specified.
- In the < Steps> node, the trained ROM (input) is exported as FMI/FMU (output).

Figure 45. RAVEN AI FMI/FMU exporting process.

https://github.com/NTNU-IHB/PythonFMU

47

Figure 46. Example RAVEN input file to export AI as FMIs/FMUs.

The FMI/FMU exporting capability allows for the deployment of the scheme reported in
Figure 47, where the RAVEN models can be used, as FMI/FMUs, in tandem with any
Dymola/Modelica (in general) and HYBRID (in particular) physical models.

Figure 47. RAVEN’s current FMI/FMU exporting capabilities.

48

Figure 48. RAVEN hybrid model scheme.

6.3 Future Extension of the FMI/FMU Exporter to the RAVEN Hybrid
Model

In previous sections, the creation and export of RAVEN AI was discussed. ROM usage is an
approach that can drastically reduce the computational time of analyses and accelerate
deployment of models. To obtain the optimal prediction capability, the ROM must be
constructed and applied only within the domain of its training set; in other words, the ROM can
guarantee valid predictions only within (or slightly outside) the boundaries of its training set. For
example, if a ROM is trained by perturbing a temperature between 500 and 600 K, the ROM

49

should not be used for predicting a system response at 1000 K.

RAVEN includes an advanced capability called the “hybrid model” to tackle this problem.
Indeed, this model is a special class of algorithms aimed to couple in-tandem, high-fidelity
physical and mathematical models (e.g., FMI/FMU Dymola models) and AI algorithms (e.g.,
ROM, AI). The AI is trained based on the results from the high‑fidelity model. The global
accuracy of the AI is evaluated based on cross-validation scores, and the local (e.g., prediction)
validity is determined via certain local validation metrics (i.e., metrics aimed to assess the
confidence of the AI predictions). Once the AI is trained, the hybrid model can decide which
model (i.e., the AI or high-fidelity model) to execute, based on the aforementioned accuracy and
validation metrics. Figure 48 shows the scheme behind the hybrid model formulation. Since the
predictions of the surrogate model are assessed in terms of accuracy, this algorithm discards
ROM predictions if they fall outside its training set boundaries or the response confidence is too
low. In such cases, the high-fidelity model is used and the ROM training set updated.

In the next steps for this program, the “hybrid model” capability will be leveraged in tandem
with the FMI/FMU exporting protocol in order to accelerate the execution of systems that
include multiple FMI/FMUs, allowing for the deployment of models that are able to
autonomously switch between RAVEN AI and Dymola models during analyses. Each FMI/FMU
will be coupled in a hybrid model configuration, resulting in accurate modeling and CPU time
saving.

7. Integrated Energy Park Demonstration Case
To demonstrate the full range of capabilities described in this report, a final test case on an

integrated energy park was conducted. The integrated energy park, shown in Figure 49, consists
of a nuclear reactor, electric batteries, and a natural gas turbine. The natural gas turbine is the
component to be exported as an FMU. The natural gas peaking turbine will then be replaced with
its own FMU from three different sources: the Dymola FMU in both model exchange and co-
simulation, then a RAVEN-based surrogate using co-simulation mode.

NPP

Battery

IGEM SYBOP

NG

50

Figure 49. Integrated energy park consisting of a nuclear reactor (NPP), Energy Manifold (EM), Balance
of Plant (BOP), Switch Yard (SY), Electric Batteries (Battery), Infinite Grid (IG), and a Natural Gas
turbine (NG). The natural gas turbine is to be exported as an FMU.

7.1 FMI/FMU Creation and Use within Dymola
As outlined in earlier sections of this report, the natural gas turbine model needs to be

modified with an electric power adaptor and an input demand signal in order to ensure that all
the variables contained in the flow ports are realigned into real input/output variables.

The adaptors outlined in the previous sections can be used to accomplish these modifications.
For the natural gas turbine example, illustrated in Figure 50, the electric port must be converted
into real inputs/outputs using the PowerFlowToFrequency adaptor previously described. In
addition, the control system of the natural gas turbine requires a top-level demand signal to
communicate the grid demand at each time interval. To implement this communication into the
model, an additional real input variable, “SES_Demand,” was created. With the adaptor and the
new input signal created, the model is ready to be exported as an FMU.

This procedure of using an adaptor to transform ports into their real components and creating
additional inputs/outputs for declared variables works well for simple models and models
intended to be used in model exchange mode. For complex models planned for simulation in co-
simulation mode, use of adaptors may prove challenging if the initialization of the models is not
well-defined. This is due to the explicit nature of co-simulation modeling.

NPP

Battery

IGEM SYBOP

NG

51

Figure 50. Preparing the natural gas turbine for conversion into an FMU. The inputs into the system are
the peaking demand and connection points for electricity backflow into the turbine model. The output is
the electrical power as a real value.

Once the model has been exported using the Dymola interface, it can then be re‑imported
into the program and can replace the natural gas turbine model. Since the FMI consists of three
inputs and one output, the three inputs must be specified by the user. To accomplish this, the
FrequencytoPowerFlow adaptor was placed in the Modelica model along with a “real”
expression to connect the turbine demand to the FMI/FMU, as shown in Figure 51.

Using this version of the FMI/FMU, three separate 5-hour simulations were run: one with
Modelica-only input, one with a co-simulation version of the gas turbine, and one in model
exchange mode. The results of this simulation set are depicted in Figure 52. Over the course of
the full 5-hour simulation, the results are all in near-perfect agreement with the setpoints, with
the model exchange and Dymola results being basically identical, and co-simulation being only
as accurate as the communication step of 1 second would allow. However, of note is that, while
the Dymola and model exchange versions of the model completed in 121.3 and 156 seconds,

52

respectively, the co-simulation model took far longer to solve (a total of 642 seconds). This
increased simulation time can be attributed to the additional communication time between the
models as well as the additional initialization routine required by the solvers.

Figure 51. Integrated energy park consisting of a nuclear reactor, electric batteries, and a natural gas
turbine replaced by a co-simulation FMU.

53

Figure 52. Top) Five-hour simulation of the natural gas turbine power vs. setpoint demand for the
integrated energy park in regard to Modelica-only model, co-simulation FMI, and model exchange FMU.
Bottom) Closeup shot of the turbine demand vs. turbine output for the different FMI versions. Note that
all agree reasonably well. Co-simulation communication interval = 1 second.

54

7.2 Creation of Surrogate Using RAVEN
Due to the large increase in simulation time, the relative issues with co-simulation

initialization routines, and the fact that there is no feedback to the rest of the grid, the FMI
created for use in the RAVEN surrogate training was reduced to having only a single input
(turbine demand) with no connected outputs. This setup allows the natural gas turbine to keep all
the initialization pieces of the “infinite” grid self-contained, thus drastically improving the
initialization routine and system robustness. Since the turbine power is a variable given by the
FMU, and no feedback is used in other units’ control systems, the turbine power was not
required to be an external variable for the initial export. The FMI/FMU (GTTP.fmu) exported to
RAVEN is shown in Figure 53.

Figure 53. Simplified model of the FMI for RAVEN surrogation.

To construct a RAVEN-based AI to surrogate the response of the turbine component, the
FMIFMU RAVEN importer described in Section was used to drive the Dymola-exported
FMI/FMU model.

Since the turbine’s response to changes in the demand is very quick (very limited inertia) and
almost perfectly linear, a Support Vector Regressor with linear kernel Error! Reference source
not found. was selected for surrogating the response. The turbine FMI/FMU GTTP.fmu was
loaded via the FMIFMU RAVEN importer and its demand sampled (1,000 Monte Carlo
samples) between 0 and 35 MW to capture the model’s full domain of variability. Finally, the
Support Vector Regressor was trained (constructed) and exported to a “brand-new” FMI/FMU
(GTTProm.fmu) by the RAVEN FMI/FMU exporter (co-simulation), as described in Section 6.2.

To validate the RAVEN AI FMI/FMU, a cross-validation assessment was performed in
RAVEN, and, due to the pure linearity of both the turbine and AI models, its average R2 score
was >0.99. This is further demonstrated in Figure 54 and Figure 55 which show a comparison of

55

the Dymola-generated turbine FMI/FMU and the RAVEN AI FMI/FMU, with the models
demonstrating good agreement.

Figure 54. Comparison of the Modelica/Dymola GTTP.fmu response (P_flow) and the RAVEN AI-based
GTTProm.fmu.

56

Figure 55. Closeup of the comparison of the Modelica/Dymola GTTP.fmu response (P_flow) and the
RAVEN AI-based GTTProm.fmu.

7.3 Comparison of Results
Section 7.2 described the process of constructing an AI model exported in an FMI/FMU from

RAVEN. To demonstrate the concept of the “plug‑and‑play” framework, along with the usage of
AI for accelerated analysis, the integrated energy park model was simulated, both using the
original Dymola model (FMI/FMU) for the gas turbine and using the RAVEN AI-based model.

Figure 56 shows the integrated energy park FMI/FMU exported via Dymola. Among the
different variables and outputs is the model fulfillment of the gas turbine model’s demand. Such
output represents the link between the IES park, and the turbine chosen for the demonstration.

Figure 57 and Figure 58 show the setup of the integrated energy park along with the detailed
Dymola FMI/FMU and the RAVEN AI-based FMI/FMU, respectively. Both models were
simulated in an ad-hoc Python code (master simulator) using the FMPy package.

Using the above-mentioned FMI/FMU setup, the two 5-hour simulations were run in the
master simulator (Python code using FMPy). Since the RAVEN AI-based FMI/FMU can be
evaluated in mere milliseconds, the simulation of the setup with the AI was much faster (~20%)
to complete, making the computation time for the turbine evaluation completely negligible;
indeed, the AI FMI/FMU almost zeroed out the CPU time for the turbine simulation, and the
totality of the CPU time was used to simulate the remaining systems in the integrated energy
park, which were more complex and computationally intensive.

Figure 59 and Figure 60 show a comparison of the turbine responses in the integrated energy
park using the Dymola FMI/FMU and the RAVEN AI-based FMI/FMU. Over the course of the
full five-hour simulation, all the results were in near-perfect agreement with the setpoints. The
results show that the setup using the RAVEN AI FMI/FMU outperformed (in terms of speed) the

57

Dymola model, with no loss of accuracy.

Figure 56. Integrated energy park (excluding the turbine) FMI/FMU generated with Dymola.

58

Figure 57. Integrated energy park FMI/FMU, including the Dymola GTTP model.

Figure 58. Integrated energy park FMI/FMU, replacing the Dymola GTTP model with the RAVEN AI-
based FMI/FMU.

59

Figure 59. Co-Simulation FMI/FMU (Dymola) vs. RAVEN AI-based FMI/FMU for a 5-hour simulation
of the turbine power vs. setpoint demand for the integrated energy park.

Figure 60. Co-Simulation FMI/FMU (Dymola) vs. RAVEN AI-based FMI/FMU closeup shot of turbine
demand vs turbine output.

60

8. CONCLUSION
This report describes the status of the flexible plug-and-play framework development for

design, analysis, and optimization of integrated energy systems. This framework seeks to
integrate Modelica and Dymola with RAVEN in terms of both FMI/FMU construction and
repository structures intended to simplify model sharing and simulation of complex dynamic
systems.

The report provides an in-depth look at the alterations needed to modify existing system-
level models for exportation as FMUs. These alterations include modifying specialty “port”
variables into their constituent parts as real variables via a new FMI adaptor package added to
the existing HYBRID repository. This package includes new adaptors for electrical, fluid, and
heat ports for export into the FMIs/FMUs. Examples were included within the FMU adaptor
package, illustrating how to properly utilize the system. Several of these examples are discussed
in Section 2 of this report.

Simulation results demonstrate that, while minor differences may occur, the overall control,
trends, and solution integrity is maintained between the standard Modelica simulation and FMU
simulation results. However, it is worth noting that, for small systems, the FMU results have a
slower simulation time than the Modelica-only simulation. While this step-by-step process does
require several levels of checks, it provides a degree of system flexibility never before
experienced. Using this process, a company can provide models that contain proprietary
information to separate entities, without disclosing any information about the model that could
be considered business sensitive. Such a capability would allow institutions to bypass the
necessity of having to “whitewash” data.

In addition to the investigative work being conducted on FMUs and FMIs, a series of updates
to the HYBRID repository regression system was completed to ready the repository for open-
sourcing. These updates include additional system-level tests for components in the HYBRID
repository, as well as increasing the testing level from a mere six tests to 32 and counting.
Further, new features have been included in the testing system, such as an initialization
subroutine for Dymola models that helps highly nonlinear complex systems initiate their
regression test. Additionally, the output keys “numberOfIntervals” and “OutputInterval” were
added to the regression system, allowing for consistent comparison points between the reference
file and the simulation results between machines. This step is necessary because the commercial
Modelica platform Dymola has a series of global output flags that are rarely consistently utilized
from one organization to another, yet do not change the trajectories of the solution.

Finally, the work that was deployed to simulate, export, and use FMI/FMU in conjunction
with AI algorithms in RAVEN represents a significant step forward in regard to delivering a
streamlined process to accelerate simulations and analysis by leveraging RAVEN advanced
algorithms. The possibility of using AI exported in FMI/FMU in any FMI/FMU-compatible
framework (e.g., FMPy and Dymola) is unique to this framework, posing the basis for
deployment of fast simulation, modeling, and analysis accelerations.

Overall, extensive work was completed to develop FMUs and FMIs from existing models
and gaining greater understanding of the requirements and limitations of FMI/FMUs.

61

9. FUTURE WORK
The activities described in this report show the potential of the concept of a “flexible plug-

and-play ecosystem” being developed within the IES program and deployed via the creation of
FORCE. In order to fulfill the promises of FORCE, several tasks are planned to be carried out in
the future of the program:

1) Master Simulator development in RAVEN: in order to automate the deployment of
models in a system that is compatible with any FMI/FMU interface, an entity (Master
Simulator) needs to be developed within RAVEN. Such development will allow for the
simulation of FMI/FMU models (AI, Dymola, etc.) directly within the RAVEN
framework allowing for the integration of such models in any RAVEN workflow, in
general, and in IES technoeconomic analysis, in particular. The Master Simulator in
RAVEN will be based on the EnsembleModel entity (see sec. 5.2), in conjunction with
the FMPy library. The Master Simulator is shown in Figure 61.

Figure 61. Proposed master simulator within RAVEN.

2) Model Exchange for RAVEN-based models: in section 6.2 the deployment of a system
for exporting RAVEN-based AI as FMI/FMU leveraging, the PythonFMU library has
been shown. However, the current library only supports FMI/FMU in co-simulation,
useful for loosely coupled models but inadequate for tightly coupled systems. To allow
for exporting of nonlinear models (e.g. Nuclear Reactor Balance of Plant, Storage, etc.),
the PythonFMU library needs to be upgraded to allow for exporting models in model
exchange and, consequentially, leverage the capability of RAVEN AI to provide first and
second order derivative information.

3) Integration of the FARM supervisory control model: Argonne National Laboratory, in
collaboration with Idaho National Laboratory, recently released a RAVEN plugin called
Feasible Actuator Range Modifier (FARM) [14],[15]. This plugin oversees deploying
supervisory bounding control for dynamic models to ensure physical limitations of the

62

model are not exceeded. This is an additional layer of control on top of the existing
physical modeling control systems. While control is still imposed for each individual
process, FARM can identify demand signals that cannot be met within safety limits and
augments the demand to meet safety specifications. For the FORCE framework to
deploy these supervisory controllers the model needs to be exported as FMI/FMU and
integrated into the plug-and-play framework.

4) Integration of the HERON plugin: INL has been developing the Holistic Energy
Resource Optimization Network (HERON) plugin to construct workflows for solving
resource allocation problems inherent to the electrical grid. This plugin oversees the
allocation of energy resources within integrated energy systems. The idea of FORCE is to
connect HERON with FARM, RAVEN, and HYBRID to solve real world energy
allocation problems. With the work completed in FY 2020 the next step is to develop the
interconnection between these different platforms and ensure simulation speed is capable
of solving real world problems.

Additional investigative work is planned in order to expand the FMU capabilities within the
existing HYBRID repository framework.

10. REFERENCES
[1] C. Rabiti, A.S. Epiney, P. Talbot, J.S. Kim, S. Bragg-Sitton, A. Alfonsi, A. Yigitoglu, S.

Greenwood, S.M. Cetiner, F. Ganda, G. Maronati. September 2017. “Status Report on
Modeling and Simulation Capabilities for Nuclear-Renewable Hybrid Energy Systems.”
INL/EXT-17-43441, Idaho National Laboratory.

[2] J.S. Kim, M. McKellar, S. Bragg-Sitton, R. Boardman. October 2016. “Status Report on the
Component Models Developed in the Modelica Framework: High-Temperature Steam
Electrolysis & Gas Turbine Power Plant.” INL/EXT-16-40305, Idaho National Laboratory.

[3] J.S. Kim, K.L. Frick. May 2018. “Status Report on the Component Models Developed in the
Modelica Framework: Reverse Osmosis Desalination Plant & Thermal Energy Storage.”
INL/EXT‑18-45505, Idaho National Laboratory.

[4] K.L. Frick. August 2019. “Status Report on the NuScale Module Development in the
Modelica Framework.” INL/EXT-19-55520, Idaho National Laboratory.

[5] A. Alfonsi, C. Rabiti, D. Mandelli, J. Cogliati, C. Wang, P.W. Talbot, D.P. Maljovec, C.
Smith. 2016. “RAVEN Theory Manual and User Guide.” INL/EXT-16-38178, Idaho
National Laboratory.

[6] C. Rabiti, A. Alfonsi, J. Cogliati, D. Mandelli, R. Kinoshita, S. Sen, C. Wang, J. Chen. 2017.
“RAVEN User Manual.” INL/EXT-15-34123, Idaho National Laboratory.

[7] Dassault Systems. “DYMOLA Systems Engineering: Multi-Engineering Modeling and
Simulation Based on Modelica and FMI.” Accessed July 24, 2020.
https://www.3ds.com/products-services/catia/products/dymola/.

[8] M.S. Greenwood: TRANSFORM - TRANsient Simulation Framework of Reconfigurable
Models. Computer Software. https://github.com/ORNL-Modelica/TRANSFORM-Library. 07
Nov. 2017. Web. Oak Ridge National Laboratory. doi:10.11578/dc.20171109.1. Available:
https://github.com/ORNL-Modelica/TRANSFORM-Library.

[9] K. Frick, A. Alfonsi, C. Rabiti. 2020. “Hybrid User Manual.” INL/MIS-20-60624, Idaho
National Laboratory.

https://www.3ds.com/products-services/catia/products/dymola/
https://github.com/ORNL-Modelica/TRANSFORM-Library

63

[10] A. Alfonsi, K. Frick, S. Greenwood, C. Rabiti. 2020. “Status on the Development of the
Infrastructure for a Flexible Modelica/RAVEN Framework for IES.” INL/EXT-20-00160,
Idaho National Laboratory.

[11] K. Frick, A. Alfonsi, C. Rabiti. 2020. “Flexible Modelica/RAVEN Framework for IES.”
INL/EXT-20-00419, Idaho National Laboratory.

[12] FMPy. 2020. “FMPy 0.2.21.” Accessed July 8, 2020. https://pypi.org/project/FMPy/.
[13] PyFMI. 2018. “PyFMI 2.5.” Accessed March 25, 2020. https://pypi.org/project/PyFMI/.
[14] H. Wang, R. Ponciroli, A. Alfonsi. Feasible Actuator Range Modifier (FARM).

https://github.com/Argonne-National-Laboratory/FARM
[15] H. Wang, R. Ponciroli, R. Vilim, A. Alfonsi, C. Rabiti. “A Recursive Data-Driven Approach

to State Variable Selection and Digital Twin Derivation.” in 12th International Topical
Meeting on Nuclear Plant Instrumentation, Control and Human Machine Interface
Technologies. (NPIC&HMIT 2021). June 2021.

https://pypi.org/project/FMPy/
https://pypi.org/project/PyFMI/
https://github.com/Argonne-National-Laboratory/FARM

64

65

APPENDIX A – HYBRID USER MANUAL

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

APPENDIX B – SQA: SOFTWARE QUALITY ASSURANCE PLAN
(SQAP)

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

APPENDIX C – SQA: SOFTWARE DESIGN DESCRIPTION (SDD)

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

APPENDIX D – SQA: HYBRID SOFTWARE REQUIREMENTS
SPECIFICATION AND TRACEABILITY MATRIX (SPC)

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

APPENDIX E – SQA: HYBRID CONFIGURATION ITEM LIST

187

188

189

190

191

	INTRODUCTION
	FUNCTIONAL MOCK-UP INTERFACES AND UNITS
	Co-simulation
	Model Exchange
	Advantages of Each Protocol

	MODELICA TO FMU ADAPTATION
	Adaptors
	Fluid Port Adaptors
	Thermal Port Adaptors
	Electrical Port Adaptors

	FMI Construction Guide
	Model Preparation
	Adaptors
	Export
	Import
	Simulation

	Turbine Replacement Example

	HYBRID REPOSITORY
	DEPLOYMENT OF A RAVEN FMI/FMU DRIVER
	RAVEN Introduction
	RAVEN Models

	DEPLOYMENT OF RAVEN FMI/FMU EXPORTER FOR AI-BASED ANALYSIS ACCELLERATIONS
	RAVEN AI construction
	Development of FMI/FMU exporting capabilities for RAVEN AI
	Future Extension of the FMI/FMU Exporter to the RAVEN Hybrid Model

	Integrated Energy Park Demonstration Case
	FMI/FMU Creation and Use within Dymola
	Creation of Surrogate Using RAVEN
	Comparison of Results

	CONCLUSION
	FUTURE WORK
	REFERENCES
	APPENDIX A – HYBRID USER MANUAL
	APPENDIX B – SQA: SOFTWARE QUALITY ASSURANCE PLAN (SQAP)
	APPENDIX C – SQA: SOFTWARE DESIGN DESCRIPTION (SDD)
	APPENDIX D – SQA: HYBRID SOFTWARE REQUIREMENTS SPECIFICATION AND
	APPENDIX E – SQA: HYBRID CONFIGURATION ITEM LIST

